Simple TD calculations with Moltran

Sim­ple ther­mo­dy­nam­ic cal­cu­la­tions with MOLTRAN.

The sim­plest kind of ther­mo­dy­nam­ic (TD) cal­cu­la­tions which can be per­formed with MOLTRAN is a cal­cu­la­tion in the Rigid-Rotor-Har­mon­ic-Oscil­la­tor (RRHO) approx­i­ma­tion. MOLTRAN can cal­cu­late elec­tron­ic, trans­la­tion­al, rota­tion­al, vibra­tional, and total con­tri­bu­tions to the mol­e­c­u­lar par­ti­tion func­tion Z, and, using them, obtain the inter­nal ener­gy, enthalpy, entropy, Helmholtz and Gibbs free ener­gies in the state of ide­al gas for var­i­ous tem­per­a­tures and pres­sures. As input data,  MOLTRAN uses the results of mol­e­c­u­lar cal­cu­la­tions per­formed with a quan­tum chem­i­cal (QC) pro­grams, e.g. with GAMESS or  Gaus­sianXX. As a whole, this kind of cal­cu­la­tions is anal­o­gous to that which can be per­formed by these pro­grams itself. The only advan­tage of MOLTRAN is that it does it faster and eas­i­er, with­out any addi­tion­al QC runs, and with fast vari­a­tion of tem­per­a­ture and pres­sure con­di­tions, atom­ic mass­es, sym­me­try num­bers and oth­er para­me­ters. In many cas­es, it also gives much more detailed reports with many impor­tant details omit­ted in the GAMESS and Gauss­ian out­puts. 

The TD cal­cu­la­tions can be per­formed by MOLTRAN with­in any reg­u­lar work ses­sion. Thus, to per­form the sam­ple TD cal­cu­la­tions, down­load the sam­ple file Moltran-Sample1.txt , and run the com­mand (it is pro­posed that MOLTRAN is already installed at your sys­tem):

moltran Moltran-Sample1.txt

After the graph­i­cal win­dow is appeared, just click “q” to quit or, oth­er­wise choose “File”->“CalcTD and Quit”. Do not the win­dow cross at the right win­dow cor­ner — it will close the pro­gram with­out TD cal­cu­la­tions. You can use also oth­er ways to per­form the cal­cu­la­tions — see MOLTRAN Man­u­al for fur­ther details. 

After the exe­cu­tion is fin­ished, the out­put file Moltran-Sample1.out will be cre­at­ed. Open it and inspect the results. At the begin­ning of out­put file, the logo and some sys­tem infor­ma­tion are locat­ed


             *******************************************************
             *                   MOLTRAN v.2.5                     *
             *               (build number   686)                  *
             *        A program for molecular visualization,       *
             *                normal modes animation,              *
             *      and thermochemical properties evaluation.      *
             *                                                     *
             *      Originally written by Stanislav Ignatov        *
             *          Theoretical Chemistry Group                *
             * N.I.Lobachevsky State University of Nizhny Novgorod *
             *             ignatov@ichem.unn.runnet.ru             *
             *            http://ichem.unn.runnet.ru/tcg           *
             *         Nizhny Novgorod, Russia, 1999-2004          *
             *******************************************************

 Input file              :Moltran-Sample1.txt
 Output file             :Moltran-Sample1.log
 TD specifications file  :none
 Current directory       :D:\Projects\WinMoltran\Source\WebPage\
 Moltran home directory  :C:\Program Files\Moltran\
 Configuration file      :C:\Program Files\Moltran\MolTran.cfg
 Fragment database       :C:\Program Files\Moltran\Moltran.fdb
 Input file format       : Gaussian 98 detected

After the exe­cu­tion is fin­ished, the out­put file Moltran-Sample1.out will be cre­at­ed. Open it and inspect the results. At the begin­ning of out­put file, the logo and some sys­tem infor­ma­tion are locat­ed

Step =    0
                          Standard orientation:
  ---------------------------------------------------------------------
  Center     Atomic     Atomic              Coordinates (Angstroms)
  Number     Number      Type              X           Y           Z
  ---------------------------------------------------------------------
     1         14             0        0.002622    0.007912    0.000022
     2          9             0       -0.592291    1.462130   -0.005416
     3          9             0       -0.541297   -0.759036    1.267762
     4          9             0       -0.536589   -0.766946   -1.264925
     5          8             0        1.605810    0.139262    0.002452
     6          1             0        2.148396   -0.650188    0.003285
  ---------------------------------------------------------------------

 Step =    1
                          Standard orientation:
  ---------------------------------------------------------------------
  Center     Atomic     Atomic              Coordinates (Angstroms)
  Number     Number      Type              X           Y           Z
  ---------------------------------------------------------------------
     1         14             0        0.002596    0.007960    0.000019
     2          9             0       -0.593620    1.464034   -0.005418
     3          9             0       -0.541932   -0.760297    1.269788
     4          9             0       -0.537243   -0.768207   -1.266948
     5          8             0        1.607746    0.139399    0.002452
     6          1             0        2.156846   -0.646406    0.003321
  ---------------------------------------------------------------------

…etc. (4 more coor­di­nate sets)…

 Step =    6
                          Standard orientation:
  ---------------------------------------------------------------------
  Center     Atomic     Atomic              Coordinates (Angstroms)
  Number     Number      Type              X           Y           Z
  ---------------------------------------------------------------------
     1         14             0        0.003045    0.007644    0.000019
     2          9             0       -0.586240    1.467400   -0.005417
     3          9             0       -0.546203   -0.757879    1.270605
     4          9             0       -0.541588   -0.765800   -1.267765
     5          8             0        1.608317    0.131687    0.002445
     6          1             0        2.157117   -0.654006    0.003357
  ---------------------------------------------------------------------

After the coor­di­nates are read-in, MOLTAN is look­ing for the ener­gies and gra­di­ents. MOLTRAN ana­lyzes them and choose the “base” opti­miza­tion cycle, i.e. cycle which will be used as a ground state of mol­e­cule for the fur­ther TD cal­cu­la­tions. Usu­al­ly, this lev­el is that one with the low­est val­ue of elec­tron­ic ener­gy. Some­times, how­ev­er, the pro­ce­dure can fail. Thus, it is use­ful to check the pro­gram deci­sion man­u­al­ly. In the cur­rent exam­ple, the pro­gram choos­es the 6-th opti­miza­tion cycle as a “base” one and will use its coor­di­nates in the fur­ther work.

        ************ READING FROM INPUT FILE IS FINISHED ************

 Coordinate sets found:    6    Energies and gradients at each cycles:

 Step          Energy                     GMax                Grms
 ---------------------------------------------------------------------
    0          -665.2665743600            0.002604            0.001286
    1          -665.2666060070            0.000697            0.000318
    2          -665.2666082900            0.000257            0.000080
    3          -665.2666081260            0.000242            0.000114
    4          -665.2666084800            0.000090            0.000031
    5             0.0000000000       999999.000000            0.000000
    6          -665.2666084800            0.000090            0.000031

 Lowest Energy:  Step    4  Energy =       -665.26660848
 Lowest GMax  :  Step    4  GMax   =          0.000090
 Lowest GRms  :  Step    5  GRms   =          0.000000

For the cho­sen base lev­el, the coor­di­nates and atom­ic mass­es are print­ed out, togeth­er with inter­mol­e­c­u­lar dis­tances. 

 Final coordinates (A) and atomic masses (AMU), for cycle:    6
 ------------------------------------------------------------------------------
 Si1          14           0.003045    0.007644    0.000019           27.976930
 F2            9          -0.586240    1.467400   -0.005417           18.998400
 F3            9          -0.546203   -0.757879    1.270605           18.998400
 F4            9          -0.541588   -0.765800   -1.267765           18.998400
 O5            8           1.608317    0.131687    0.002445           15.994910
 H6            1           2.157117   -0.654006    0.003357            1.007830
 ------------------------------------------------------------------------------
 Mass center, mol.mass:   -0.037459    0.005804   -0.000058          101.974865


 Distance matrix (A):

             1   Si1     2   F2      3   F3      4   F4      5   O5   
 --------------------------------------------------------------------
  1  Si1     0.000000  
  2  F2      1.574222    0.000000  
  3  F3      1.581799    2.565483    0.000000  
  4  F4      1.581808    2.565677    2.538387    0.000000  
  5  O5      1.610059    2.569099    2.653585    2.653490    0.000000  
  6  H6      2.253401    3.467917    2.987415    2.985173    0.958382  

             6   H6   
 --------------------------------------------------------------------
  6  H6      0.000000  

After that, the cho­sen coor­di­nates are reduced to prin­ci­pal axes and prin­ci­pal moments of iner­tia and the cor­re­spond­ing rota­tion­al con­stants are print­ed out (in dif­fer­ent units) togeth­er with the prin­ci­pal axes them­selves and the mol­e­c­u­lar coor­di­nates reduced to the prin­ci­pal axes.

 Principal moments of inertia and rotational constants:
 ---------------------------------------------------------------
 Ia,Ib,Ic, a.u.   :     454.809198     450.940484     441.017549
 Ia,Ib,Ic, amu*A^2:     127.359546     126.276195     123.497491
 A, B, C,  a.u.   :       0.002199       0.002218       0.002267
 A, B, C,  GHz    :       3.968126       4.002169       4.092218
 Principal axes   :           1              2              3
                   X      0.006686      -0.704364       0.709807
                   Y     -0.004524       0.709794       0.704394
                   Z      0.999967       0.007920      -0.001559

 Molecular coordinates in principal axes (A) 
 ---------------------------------------------------------------
 Si1          14          0.000340      -0.027222       0.030046
 F2            9         -0.015640       1.423933       0.640019
 F3            9          1.270675      -0.173652      -0.901025
 F4            9         -1.267545      -0.202630      -0.899371
 O5            8          0.012937      -1.069854       1.256851
 H6            1          0.021072      -2.014083       1.092954
 ---------------------------------------------------------------

Then, the sym­me­try prop­er­ties of the mol­e­cule are stud­ied and the sum­ma­ry of mol­e­c­u­lar para­me­ters are print­ed out. It shows the sym­me­try group, the approx­i­mate sym­me­try group, and the rota­tion­al sym­me­try num­ber cor­re­spond­ing to the cur­rent (exact) sym­me­try group. In the cur­rent exam­ple, the approx­i­mate sym­me­try of SiF3OH mol­e­cule is Cs where­as the exact group is only C1 due to the small dis­tor­tions of the atom posi­tions result­ed from the non-pre­cise mol­e­c­u­lar opti­miza­tion per­formed with Gauss­ian.

 Rotational Symmetry       : Asymmetric Top
 Symmetry Index            : 40000000
 Symmetry Group            : C1     (will be used in further analysis)
 Approximate Symmetry      : Cs  
 Rotational Symmetry Number:  1

Below, the sum­ma­ry of mol­e­c­u­lar para­me­ters are print­ed out show­ing the data found in the input file. By default, tem­per­a­ture and pres­sure for fur­ther TD cal­cu­la­tions are ser to the stan­dard con­di­tions. These con­di­tions can be set to oth­er val­ues using com­mand string options /TT and /PP or with menu com­mands “Calculations”->“Thermodynamics”: options “Tem­per­a­ture” and “Pres­sure”. Using the com­mand-string options, you can also set oth­er val­ues of sym­me­try num­bers,  scal­ing fac­tors and oth­er cal­cu­la­tion para­me­ters (see pro­gram man­u­al for fur­ther details).

 ****** PARAMETERS IN EFFECT *******

 Temperature, K, set to  :    298.15
 Pressure, Pa,   set to  : 101325.00
 Rotation number set to  :         1
 Internal rotations found:         0
 Coordinate sets found   :         7
 Frequencies found       :        18
 Num. of imaginary freqs :         0
 Frequencies scaled by   :    1.0000
 Number of atoms         :         6
 Molecular mass          :  101.9749
 Symmetry group          : C1  
 Stoichiometry           : H   1
                           O   1
                           F   3
                           Si  1

 ***********************************

At this point, the inter­ac­tive work with MOLTRAN graph­i­cal inter­face is fin­ished and the pro­gram prints the para­me­ters of last view (i.e. rota­tion matrix of mol­e­c­u­lar coor­di­nate sys­tem (MCS) rel­a­tive­ly to the lab­o­ra­to­ry one (LCS)), view angles (the Euler angles for rota­tion MCS to LCS), shift lengths MCS rel­a­tive­ly to MCS, the zoom­ing fac­tor, and view com­mand sum­ma­riz­ing all these options. The view com­mand is a string writ­ten in the input for­mat of MOLTRAN suit­able for putting to the com­mand string of fur­ther MOLTRAN runs. Thus, run­ning MOLTRAN with this com­mand will pro­duce the same view at the screen as it was obtained last time. More­over, the coor­di­nates of mol­e­cule is print­ed both in MCS and LCS.

          ************ INTERACTIVE WORK IS FINISHED ************

 Last view parameters:
 Rotation matrix:   1.00000   0.00000   0.00000
                :   0.00000   1.00000   0.00000
                :   0.00000   0.00000   1.00000
 View Angles    :       0.0       0.0       0.0     (Discrep:  0.000000)
 ShiftX,Y, Zoom :   0.00000   0.00000   1.00000
 View command   :/v0.0:0.0:0.0:0.00:0.00:1.00


Last view coordinates and bonds in a molecular (moving) frame, (A):
-------------------------------------------------------------------------------
 Si1    14     0.003045    0.007644    0.000019   2   3   4   5   0   0   0   0   0   0   0   0   0   0   0   0
 F2      9    -0.586240    1.467400   -0.005417   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
 F3      9    -0.546203   -0.757879    1.270605   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
 F4      9    -0.541588   -0.765800   -1.267765   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
 O5      8     1.608317    0.131687    0.002445   1   6   0   0   0   0   0   0   0   0   0   0   0   0   0   0
 H6      1     2.157117   -0.654006    0.003357   5   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
-------------------------------------------------------------------------------

Last view coordinates and bonds in a laboratory (fixed) frame, (A):
-------------------------------------------------------------------------------
 Si1    14     0.003045    0.007644    0.000019   2   3   4   5   0   0   0   0   0   0   0   0   0   0   0   0
 F2      9    -0.586240    1.467400   -0.005417   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
 F3      9    -0.546203   -0.757879    1.270605   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
 F4      9    -0.541588   -0.765800   -1.267765   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
 O5      8     1.608317    0.131687    0.002445   1   6   0   0   0   0   0   0   0   0   0   0   0   0   0   0
 H6      1     2.157117   -0.654006    0.003357   5   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
-------------------------------------------------------------------------------

Then, the results of TD cal­cu­la­tions are print­ed out. The pro­gram gives again the key options used in the cal­cu­la­tion — T, P, rota­tion­al sym­me­try num­ber and mol­e­c­u­lar mass.

 ******************** THERMOCHEMICAL PROPERTIES EVALUATION ********************


 Molecular geometry corresponds to the last coordinate set - Step No.    6

 Temperature   :       298.15 K 
 Pressure      :    101325.00 Pa
 Rot. number   :            1
 Molecular mass:       101.97 amu

The elec­tron­ic con­tri­bu­tion is cal­cu­lat­ed using the val­ue of mol­e­c­u­lar mul­ti­plic­i­ty found in the input file. Check this val­ue. If you will find it is wrong, you can over­ride it using the /mult com­mand string option (see man­u­al for details). The elec­tron­ic con­tri­bu­tions to par­ti­tion func­tion (called here Q) is giv­en, togeth­er with con­tri­bu­tions to heat capac­i­ty (Cp and Cv), inter­nal ener­gy (U), enthalpy (H), entropy (S) and the Gibbs free ener­gy (G).

 *** Electronic contribution ***

 Spin multiplicity of molecule = 1

 Qelec =     1.00000E+00   ln(Qelec)=     0.00000   lg(Qelec)=     0.00000

 CVelec=      0.000 J/K/mol     0.000 cal/K/mol      0.00000000 Hartree/K
 CPelec=      0.000 J/K/mol     0.000 cal/K/mol      0.00000000 Hartree/K

 Uelec =      0.000  kJ/mol     0.000  kcal/mol      0.00000000 Hartree
 Helec =      0.000  kJ/mol     0.000  kcal/mol      0.00000000 Hartree
 Selec =      0.000 J/K/mol     0.000 cal/K/mol      0.00000000 Hartree/K
 Gelec =      0.000  kJ/mol     0.000  kcal/mol      0.00000000 Hartree

For rota­tion­al con­tri­bu­tion, the prin­ci­pal moments are print­ed again, and the deci­sion are made on the kind of mol­e­cule (here, asym­met­ric non-lin­ear top). The rota­tion­al con­tri­bu­tions are then cal­cu­lat­ed and print­ed out:

 *** Translational contribution ***

 Qtran =     4.04757E+07   ln(Qtran)=    17.51621   lg(Qtran)=     7.60719

 CVtran=     12.472 J/K/mol     2.981 cal/K/mol      0.00000475 Hartree/K
 CPtran=     20.786 J/K/mol     4.968 cal/K/mol      0.00000792 Hartree/K

 Utran =      3.718  kJ/mol     0.889  kcal/mol      0.00141631 Hartree  
 Htran =      6.197  kJ/mol     1.481  kcal/mol      0.00236052 Hartree  
 Stran =    166.424 J/K/mol    39.776 cal/K/mol      0.00006339 Hartree/K
 Gtran =    -43.422  kJ/mol   -10.378  kcal/mol     -0.01653896 Hartree  

For rota­tion­al con­tri­bu­tion, the prin­ci­pal moments are print­ed again, and the deci­sion are made on the kind of mol­e­cule (here, asym­met­ric non-lin­ear top). The rota­tion­al con­tri­bu­tions are then cal­cu­lat­ed and print­ed out:

 *** Rotational contribution ***

 Principal moments of inertia, a.u.
         454.8091983
         450.9404840
         441.0175495

 Asymmetric top
 Non-linear molecule

 Qrot =     1.07659E+05   ln(Qrot)=    11.58672   lg(Qrot)=     5.03205

 CVrot=     12.472 J/K/mol     2.981 cal/K/mol      0.00000475 Hartree/K
 CProt=     12.472 J/K/mol     2.981 cal/K/mol      0.00000475 Hartree/K

 Urot =      3.718  kJ/mol     0.889  kcal/mol      0.00141631 Hartree  
 Hrot =      3.718  kJ/mol     0.889  kcal/mol      0.00141631 Hartree  
 Srot =    108.809 J/K/mol    26.006 cal/K/mol      0.00004144 Hartree/K
 Grot =    -28.723  kJ/mol    -6.865  kcal/mol     -0.01094028 Hartree  

For the cal­cu­la­tion of the total vibra­tional con­tri­bu­tion, the vibra­tional fre­quen­cies found in the input file are print­ed, togeth­er with IR inten­si­ties, scaled val­ues of fre­quen­cy, and reduced mass. 

It should be not­ed that cal­cu­la­tion of reduced mass after on the basis of GAMESS out­put file requires the addi­tion­al file con­tain­ing the mol­e­c­u­lar hes­s­ian (also pro­vid­ed by GAMESS). By default, reduced mass­es cal­cu­lat­ed on the basis of GAMESS out­put pro­duces the wrong val­ues (all reduced mass­es are set to 1.0). 

Far­ther in the table, “Used in TD” flag shows whether the cur­rent vibra­tion con­tributes to the TD func­tions. By default, six ini­tial fre­quen­cies are con­sid­ered as trans­la­tions and rota­tions and will not be tak­en into account. How­ev­er, user can over­ride this deci­sion using the .tdi-file with addi­tion­al options for TD cal­cu­la­tions described in the Man­u­al. 

For each fre­quen­cy, MOLTRAN gives the con­tri­bu­tions of the cor­re­spond­ing vibra­tion to entropy, ZPE of giv­en mode, enthalpy (H-H0), enthalpy includ­ing ZPE (Hvib), Gibbs free ener­gy (includ­ing ZPE), heat capac­i­ty (Cvib), and the con­tri­bu­tions to the total par­ti­tion func­tion (Q). At the bot­tom of table, the sum of con­tri­bu­tions for all the vibra­tions tak­en into account are giv­en.

 *** Vibrational contribution ***

Scaling factor for frequencies:   1.0000

No. Frequency Intensity  Scaled  Reduced Used  Theta     Svib      ZPE   (H-H0)     Hvib     Gvib     Cvib    Qvib  
      cm-1      km/mol    Freq     Mass  inTD?   K    J/K/mol   kJ/mol   kJ/mol   kJ/mol   kJ/mol  J/K/mol          
----------------------------------------------------------------------------------------------------------------------
   1    0.000    0.000    0.000     0.00  0    0.000    0.000    0.000    0.000    0.000    0.000    0.000 1.00000E+00
   2    0.000    0.000    0.000     0.00  0    0.000    0.000    0.000    0.000    0.000    0.000    0.000 1.00000E+00
   3    0.000    0.000    0.000     0.00  0    0.000    0.000    0.000    0.000    0.000    0.000    0.000 1.00000E+00
   4    0.000    0.000    0.000     0.00  0    0.000    0.000    0.000    0.000    0.000    0.000    0.000 1.00000E+00
   5    0.000    0.000    0.000     0.00  0    0.000    0.000    0.000    0.000    0.000    0.000    0.000 1.00000E+00
   6    0.000    0.000    0.000     0.00  0    0.000    0.000    0.000    0.000    0.000    0.000    0.000 1.00000E+00
   7  113.424  102.367  113.424     1.19  1  163.191   13.428    0.678    1.862    2.541   -1.463    8.110 2.37239E+00
   8  262.689    1.702  262.689    11.45  1  377.950    6.878    1.571    1.231    2.802    0.752    7.285 1.39177E+00
   9  276.356   18.597  276.356     6.46  1  397.614    6.511    1.653    1.183    2.836    0.895    7.184 1.35782E+00
  10  360.778   40.805  360.778     7.63  1  519.078    4.681    2.158    0.918    3.076    1.680    6.498 1.21263E+00
  11  373.713   43.731  373.713    18.24  1  537.690    4.454    2.235    0.882    3.117    1.789    6.385 1.19722E+00
  12  382.993   51.468  382.993    17.31  1  551.041    4.298    2.291    0.857    3.147    1.866    6.303 1.18697E+00
  13  762.595    6.608  762.595     9.98  1 1097.203    1.004    4.561    0.236    4.797    4.498    2.989 1.02587E+00
  14  814.258  175.792  814.258     1.42  1 1171.535    0.820    4.870    0.195    5.066    4.821    2.626 1.02005E+00
  15  960.531  231.101  960.531    22.61  1 1381.988    0.459    5.745    0.113    5.858    5.721    1.768 1.00980E+00
  16  989.905  264.957  989.905    19.73  1 1424.251    0.408    5.921    0.101    6.022    5.900    1.625 1.00849E+00
  17 1026.792  186.919 1026.792     6.05  1 1477.323    0.351    6.142    0.087    6.229    6.124    1.459 1.00710E+00
  18 3908.961  138.588 3908.961     1.07  1 5624.117    0.000   23.381    0.000   23.381   23.381    0.000 1.00000E+00
----------------------------------------------------------------------------------------------------------------------
 Total for   12 vibrations                             43.292   61.207    7.664   68.871   55.963   52.232 8.29156E+00

Now, the total (electronic+translational+rotational+vibrational) con­tri­bu­tions to the TD func­tions are print­ed.

 *** Total for ELEC+TRANS+ROT+VIBR contributions ***

 Qtot =     3.61310E+13   ln(Qtot)=    31.21817   lg(Qtot)=    13.55788

 CVtot=     77.176 J/K/mol    18.445 cal/K/mol      0.00002940 Hartree/K
 CPtot=     85.490 J/K/mol    20.433 cal/K/mol      0.00003256 Hartree/K
 ZPEtot     61.207  kJ/mol    14.629  kcal/mol      0.02331303 Hartree  
 Utot =     76.308  kJ/mol    18.238  kcal/mol      0.02906476 Hartree  
 Htot =     78.787  kJ/mol    18.830  kcal/mol      0.03000897 Hartree  
 Stot =    318.525 J/K/mol    76.129 cal/K/mol      0.00012132 Hartree/K
 Gtot =    -16.182  kJ/mol    -3.868  kcal/mol     -0.00616343 Hartree  

The val­ues above are “absolute TD val­ues”, i.e. val­ues of TD func­tions count­ed off from the total (electronic+numclear) ener­gy of mol­e­cule. In order to cal­cu­late the real val­ues of TD func­tions for i.e. chem­i­cal reac­tions, these val­ues should be summed with the mol­e­c­u­lar ener­gy obtained by quan­tum chem­i­cal method. 

Below, MOLTRAN gives the cor­rect­ed val­ues of mol­e­c­u­lar total ener­gy (found in the input file as described above). Because the base (min­i­mum) ener­gy found in the file can be deter­mined incor­rect­ly (e.g. when fin­ish­ing cycles of the input file were cor­rupt­ed), it is strong­ly rec­om­mend­ed to check the pro­gram deci­sion man­u­al­ly. 

The bot­tom val­ues give the ener­gy of mol­e­cule cor­rect­ed to ZPE, U, H, and G. They can be used in cal­cu­la­tions of ther­mo­dy­nam­ics of reac­tions with par­tic­i­pa­tion of the giv­en mol­e­cule

 *** Total energy corrected by TD functions ****
 Minimum electronic-nuclear energy was taken from the input file at step:   4
 Minimum Etot:    -665.26660848  (Please check the program decision manually!)

 Etot        =    -665.26660848
 Etot+ZPEtot =    -665.24329545
 Etot+Utot   =    -665.23754372
 Etot+Htot   =    -665.23659951
 Etot+Gtot   =    -665.27277191

Final­ly, the con­denced table of TD func­tions are giv­en, cal­cu­lat­ed for wide range of tem­per­a­tures. By default, T ranges from 10 K to 500 K. How­ev­er, the required range and step size can be set using the com­mand-string options /thermo, usnig the .tdi-file options, or direct­ly from the menu “Calculations”->Thermodynamics” of MOLTRAN graph­i­cal inter­face.

 Thermodynamics at various temperatures (w/o internal rotations):

 Temperature    CV        CP        U         H         S         G          Q            ln(Q)
      K       J/K/mol   J/K/mol   kJ/mol    kJ/mol   J/K/mol    kJ/mol
-------------------------------------------------------------------------------------------------
    10.000    24.944    33.258    61.456    61.539   162.323    59.916    5.51448E+06    15.52289
    20.000    25.102    33.416    61.706    61.872   185.397    58.165    8.82568E+07    18.29576
    30.000    26.028    34.342    61.961    62.211   199.094    56.238    4.48622E+08    19.92169
    40.000    27.470    35.785    62.228    62.561   209.165    54.194    1.43618E+09    21.08525
    50.000    29.103    37.418    62.511    62.927   217.322    52.061    3.58697E+09    22.00057
    60.000    30.948    39.262    62.811    63.310   224.303    49.852    7.67820E+09    22.76165
    70.000    33.057    41.371    63.131    63.713   230.511    47.577    1.48037E+10    23.41814
    80.000    35.404    43.719    63.473    64.138   236.186    45.243    2.64785E+10    23.99960
    90.000    37.909    46.223    63.840    64.588   241.479    42.855    4.47787E+10    24.52500
   100.000    40.478    48.792    64.232    65.063   246.482    40.415    7.25225E+10    25.00716
   110.000    43.035    51.349    64.649    65.564   251.253    37.926    1.13498E+11    25.45505
   120.000    45.529    53.843    65.092    66.090   255.828    35.390    1.72748E+11    25.87510
   130.000    47.931    56.245    65.559    66.640   260.233    32.810    2.56927E+11    26.27206
   140.000    50.229    58.544    66.050    67.214   264.486    30.186    3.74735E+11    26.64948
   150.000    52.424    60.739    66.564    67.811   268.601    27.521    5.37463E+11    27.01013
   160.000    54.522    62.837    67.098    68.429   272.588    24.815    7.59656E+11    27.35613
   170.000    56.533    64.847    67.654    69.067   276.458    22.069    1.05993E+12    27.68922
   180.000    58.465    66.779    68.229    69.725   280.220    19.286    1.46195E+12    28.01079
   190.000    60.327    68.641    68.823    70.403   283.881    16.465    1.99568E+12    28.32201
   200.000    62.127    70.441    69.435    71.098   287.448    13.609    2.69879E+12    28.62382
   210.000    63.870    72.185    70.065    71.811   290.927    10.717    3.61847E+12    28.91707
   220.000    65.561    73.876    70.712    72.542   294.324     7.790    4.81356E+12    29.20246
   230.000    67.203    75.517    71.376    73.289   297.644     4.830    6.35706E+12    29.48059
   240.000    68.797    77.111    72.056    74.052   300.892     1.838    8.33925E+12    29.75199
   250.000    70.345    78.660    72.752    74.831   304.072    -1.187    1.08713E+13    30.01715
   260.000    71.849    80.163    73.463    75.625   307.186    -4.244    1.40897E+13    30.27646
   270.000    73.307    81.622    74.189    76.434   310.239    -7.331    1.81611E+13    30.53030
   280.000    74.721    83.036    74.929    77.257   313.233   -10.448    2.32889E+13    30.77900
   290.000    76.091    84.406    75.683    78.094   316.171   -13.595    2.97200E+13    31.02284
   300.000    77.418    85.732    76.451    78.945   319.055   -16.771    3.77535E+13    31.26210
   310.000    78.701    87.015    77.231    79.809   321.887   -19.976    4.77504E+13    31.49701
   320.000    79.940    88.255    78.025    80.685   324.669   -23.209    6.01454E+13    31.72779
   330.000    81.138    89.452    78.830    81.574   327.404   -26.469    7.54605E+13    31.95463
   340.000    82.293    90.608    79.647    82.474   330.091   -29.757    9.43204E+13    32.17772
   350.000    83.408    91.722    80.476    83.386   332.734   -33.071    1.17472E+14    32.39722
   360.000    84.482    92.796    81.315    84.308   335.333   -36.411    1.45803E+14    32.61328
   370.000    85.516    93.831    82.165    85.242   337.890   -39.778    1.80371E+14    32.82604
   380.000    86.513    94.827    83.025    86.185   340.405   -43.169    2.22429E+14    33.03563
   390.000    87.472    95.786    83.895    87.138   342.881   -46.586    2.73457E+14    33.24217
   400.000    88.395    96.709    84.775    88.101   345.318   -50.027    3.35204E+14    33.44576
   410.000    89.282    97.597    85.663    89.072   347.717   -53.492    4.09729E+14    33.64652
   420.000    90.136    98.451    86.560    90.052   350.079   -56.981    4.99452E+14    33.84453
   430.000    90.958    99.272    87.466    91.041   352.405   -60.493    6.07208E+14    34.03989
   440.000    91.748   100.062    88.379    92.038   354.697   -64.029    7.36318E+14    34.23268
   450.000    92.507   100.822    89.301    93.042   356.954   -67.587    8.90660E+14    34.42298
   460.000    93.238   101.552    90.229    94.054   359.178   -71.168    1.07476E+15    34.61087
   470.000    93.940   102.254    91.165    95.073   361.369   -74.771    1.29386E+15    34.79641
   480.000    94.616   102.930    92.108    96.099   363.529   -78.395    1.55409E+15    34.97967
   490.000    95.266   103.580    93.057    97.132   365.658   -82.041    1.86253E+15    35.16071
   500.000    95.891   104.206    94.013    98.171   367.757   -85.708    2.22738E+15    35.33960
-------------------------------------------------------------------------------------------------